B7 polytope - definição. O que é B7 polytope. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é B7 polytope - definição


B7 polytope         
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
  • 80px
WIKIMEDIA LIST ARTICLE
List of 7-cube polytopes; List of B7 polytopes
In 7-dimensional geometry, there are 128 uniform polytopes with B7 symmetry. There are two regular forms, the 7-orthoplex, and 8-cube with 14 and 128 vertices respectively.
B7 (protein)         
FAMILY OF CELL-SURFACE PROTEINS FOUND ON ANTIGEN-PRESENTING CELLS
B7 family; B7 antigens
B7 is a type of integral membrane protein found on activated antigen-presenting cells (APC) that, when paired with either a CD28 or CD152 (CTLA-4) surface protein on a T cell, can produce a costimulatory signal or a coinhibitory signal to enhance or decrease the activity of a MHC-TCR signal between the APC and the T cell, respectively.
Integral polytope         
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
  • 120px
CONVEX POLYTOPE WHOSE VERTICES ALL HAVE INTEGER CARTESIAN COORDINATES
Convex lattice polytope
In geometry and polyhedral combinatorics, an integral polytope is a convex polytope whose vertices all have integer Cartesian coordinates. That is, it is a polytope that equals the convex hull of its integer points.